\qquad Date

Chapter 3 \& 4 - Final Review

Identify each statement as either true (T) or false (F) by circling the correct choice.

1) T F The slope of a line depends on which points on the line you choose to calculate it.
2) T
F If the graph of a line has slope q and y-intercept $(0, r)$ then the equation for the line is $y=q x+r$.
3) T F If two parallel lines are cut by a transversal then the alternate interior angles are supplementary.
4) T F If lines x, y, and z are in the same plane, and $x \perp y$ and $y \perp z$, then $x \perp z$.
5) T F
You can determine the slope of a segment if you are given only the coordinates of its midpoint.
6) T F If two distinct lines on a graph have
7) T F If porylle two lines are cut by a transversal then the alternate exterior angles are congruent.
8) T $\mathrm{F} \quad \begin{aligned} & \text { If } m \text { is the slope of } \overline{\mathrm{AB}} \text {, then the } \\ & \text { slope of the perpendicular bisector of }\end{aligned}$
9) T F If two lines are cut by a transversal forming pairs of congruent corresponding angles, congruent alternate interior angles, or congruent alternate exterior angles, then the lines are parallel.
the same slope, then they are parallel.
10) T If lines x, y, and z are in the same $\begin{aligned} & \text { plane, and } x \perp y \text { and } y \perp z \text {, then }\end{aligned}$ $x \| z$.

For \#11 \& 12, find $m \angle 1$ and $m \angle 2$. Justify your answer with a postulate or theorem (abbreviations ok).
11)

$m \angle 1=85^{\circ}$
Reason \qquad
$m \angle 2=110^{\circ}$
Reason \qquad
12)

$m \angle 1=79^{\circ}$
Reason \qquad
$m \angle 2=79^{\circ}$
Reason \qquad
13) Find the midpoint of the segment connecting points $(3,5)$ and $(-1,9)$.

$$
\begin{aligned}
& x_{m}=\frac{3+-1}{2}=1 \\
& y_{m}=\frac{5+9}{2}=7
\end{aligned}
$$

14) One endpoint of $\overline{A B}$ is $A(-1,9)$. The midpoint is $(-3,6)$. Find the coordinates of the other endpoint.

15) In quadrilateral $A B C D$, with the given coordinates, are the diagonals perpendicular? Show work and explain your reasoning.
$A(2,5)$
$B(3,2)$
$C(4,8)$
$D(-9,10)$

$$
\begin{aligned}
& m_{A C}=\frac{3}{2} \\
& m_{\overline{B D}}=-\frac{2}{3}
\end{aligned}
$$

17) Write the equation in slope-intercept form of the line that is the perpendicular bisector of $\overline{A B}$. Show all work for full credit.

$$
\begin{aligned}
& A(9,-1) \text { and } B(1,7) \\
& m=\frac{7--1}{1-9}=\frac{8}{-8}=-1 \\
& m_{1}=1 \\
& \text { Midpoint }=\left(\frac{9+1}{2}, \frac{-1+7}{2}\right) \\
& (5,3) \\
& y=1 x+b \\
& 3=1(5)+b \\
& 3=5+b \\
& -2=b \\
& y=x-2
\end{aligned}
$$

16) Write the equation in slope-intercept form of the line through point $B(4,7)$ and perpendicular to the line: $4 x+2 y=8$.

$$
\begin{aligned}
2 y & =-4 x+8 \\
y & =-2 x+4 \\
\rightarrow y & =\frac{1}{2} x+b \\
7 & =\frac{1}{2}(y)+b \\
7 & =2+b \\
5 & =b \\
y & =\frac{1}{2} x+5
\end{aligned}
$$

18) What is the equation in slope-intercept form of the line parallel to $y=2 x+3$ that contains $(4,6)$?

$$
\begin{aligned}
m & =2 \\
y & =2 x+b \\
6 & =2(4)+b \\
6 & =8+b \\
-2 & =b \\
y & =2 x-2
\end{aligned}
$$

Complete the following proof.
19) Given: $a \| b$
$\angle 5$ is supplementary to $\angle 2$
Prove: $l \| m$

Statement Reasons

1. $a \| b$
2. $\angle 5$ is supplementary to $\angle 2$

Given
3. $\angle 1 \cong \angle 5$
4. $\angle 1$ is supplementary to $\angle 2$
5.

CA

20) Solve for x and y : (4 pts)

$$
\begin{align*}
&-8 x+y=-17 \text { and } 5 x-3 y=-6 \\
&-8 x+y=-17 \rightarrow-24 x+3 y
\end{aligned}=-517 \begin{aligned}
5 x-3 y & =-6 \quad \\
\frac{5 x-3 y}{-19 x} & =-6 \\
x & =3 \tag{3,7}\\
y & =7
\end{align*}
$$

Identify each statement as either true (T) or false (F) by circling the correct choice
21) T F A triangle with all the sides equal in measure is acute.
22) T F The capital letters CPCTC are an abbreviation for the phrase "corresponding parts of congruent triangles are congruent."
23) T F The sum of the measures of the three angles of an obtuse triangle is greater than the sum of the measures of the three angles of an acute triangle.
24) T If the base angles of an isosceles triangle each measure 37°, then the vertex angle has a measure of 106°.
25) T (F

If a triangle has two angles of equal measure, then the third angle is obtuse.
26) T (F

If $\triangle \mathrm{DGO}$ is congruent to $\triangle T R A$, then $\overline{D G}$ is congruent to $\overline{T A}$.
27) T The largest side of a triangle is opposite the smallest angle.
28) Find the lengths of the missing sides. SHOW WORK.!

$$
2 x=3.0
$$

$$
x=1.5
$$

29) $\mathrm{PR}=\mathrm{QR}$ and $\mathrm{QS}=\mathrm{RS}$. If the $\mathrm{m} \angle \mathrm{RSQ}=130^{\circ}$, what is the $\mathrm{m} \angle \mathrm{QPR}$?

$$
m \angle Q P R=12.5^{\circ}
$$

30) Find the measure of the missing variable.

$$
\begin{aligned}
5 x-2 & =2 x+76 \\
3 x & =78 \\
x & =26^{\circ}
\end{aligned}
$$

Provide each missing reason or statement in the proof.
31) Given: $\angle D \cong \angle C$

$$
\overline{\mathrm{DE}} \cong \overline{\mathrm{EC}}
$$

Show: $\overline{\mathrm{AE}} \cong \overline{\mathrm{BE}}$
Flow-chart Proof:

32) Given: $\angle 1 \cong \angle 2$

Prove: $\quad \overline{\angle 3} \cong \angle 4$

Statements

1. $\angle 1 \cong \angle 2$
2. $\angle 3 \cong \angle 4$
3. $\overline{C X} \cong \overline{C X}$
4. $\triangle A X C \cong \triangle B X C$
5. $\overline{A C} \cong \overline{B C}$

Reasons

1. Given
2. Given
3. Reflexive Property
4. \qquad
33) Write a proof.

Given: $\quad \overline{\mathrm{PR}} \cong \overline{\mathrm{PQ}}$

$$
\overline{\mathrm{PT}} \cong \overline{\mathrm{PS}}
$$

Prove: $\overline{\mathrm{QS}} \cong \overline{\mathrm{RT}}$

$$
\begin{array}{rlrl}
\overline{P K} \cong \overline{P Q} & & \text { Given } \\
\overline{P T} \cong \overline{P S} & & \text { Given } \\
\angle R P Q \cong \angle R P Q & & \text { Reflexive Prop. } \\
\triangle P T R & \cong \triangle P S Q & & \text { GAS } \\
\overline{Q S} \cong \overline{R T} & & \text { CPCTC }
\end{array}
$$

34) Given: $\angle \mathrm{ZWX} \cong \angle \mathrm{YXW}, \angle \mathrm{ZXW} \cong \angle \mathrm{YWX}$

Prove: $\triangle Z J W \cong \triangle Y J X$

$$
\begin{aligned}
\angle 2 W X & \cong \angle Y X W \\
\angle 2 X W & \cong \angle X W X \\
\overline{W X} & \cong \overline{W X}
\end{aligned}
$$

$$
\Delta 2 X W \cong \triangle Y W X
$$

$$
\angle Z \cong \angle Y
$$

$$
\overline{2 w} \cong \overline{X X}
$$

$$
\angle Z J W \cong \angle Y J X
$$

$$
\Delta 2 J W \cong \triangle Y J X
$$

Given
Given
Keflexive
ASA
CPCTC
CPCTC
$\checkmark A$
AAS

